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 There are many propulsion applications for which hydrogen and oxygen are 
attractive as fuel and oxidizer.  These include liquid-propellant rocket motors with high 
specific impulse, air-breathing ramjets with supersonic combustion and certain types of 
pulse-detonation engines.  Detailed knowledge of the chemical kinetics of combustion of 
hydrogen and oxygen is needed for rational design of combustors for such applications.  
Since there are only twenty-some steps in hydrogen-oxygen combustion chemistry, it is 
possible to ascertain all of the relevant rate parameters for this system much more 
accurately than for other fuel-oxidizer combinations.  Although the relevant rate 
parameters are now rather well known, there are still some notable uncertainties that 
deserve further investigation.  These include the falloff behavior at high pressures and 
chaperon efficiencies of various third bodies.  More than twenty different mechanisms 
are currently available in the literature, some quite new.  Predictions of these different 
mechanisms are in good agreement for most processes.  There are, however, notable 
differences in predictions of autoignition induction times near crossover, where the rate 
of OOHOH +→+ 2  equals the rate of MHOMOH +→++ 22 .  Even certain very 
recent mechanisms are in poor agreement with experiment in this respect.  A mechanism 
is given here that agrees well with experiment.  A very simple mechanism consisting of 
only six irreversible elementary steps actually provides excellent agreement for 
autoignition delays over a very wide range of conditions.  Simplifications of this type can 
be useful in computational fluid dynamics of reacting flows and in various practical 
propulsion calculations. 
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PRACTICAL NEEDS 

 

• Hydrogen-Oxygen Liquid-Propellant Rocket-

Engine Chamber Volume 

• Acoustic Instability in Liquid-Propellant Rockets 

• Liquid-Propellant Rocket Throttling, Ignition 

and Extinction 

• Hydrogen-Fueled SCRAMjet Autoignition 

• Hydrogen-Fueled Airbreathing-Engine Flameout 

• Pulse-Detonation Engines in Hydrogen-Oxygen 

or Hydrogen-Air Systems 

 

 

 

 

 

 

 



EXPERIMENTAL TESTING GROUNDS FOR 

MECHANISMS 

 

• Laminar Burning Velocities of Premixed Flames 

• Structures of Premixed Laminar Flames 

• Structures of Laminar Diffusion Flames 

• Structures of Partially Premixed Laminar 

Diffusion Flames 

• Extinction of Laminar Diffusion Flames 

• Homogeneous Autoignition Times 

• Ignition of Laminar Diffusion Flames 

• Detonation Structures 

 

 

 

 

 

 



PROBLEMS AND CONDITIONS OF 

INTEREST 

 

• Mainly Temperatures Above About 1000K, 

Pressures Below About 800 Bar and Equivalence 

Rations Less Than About 3 

• Autoignition Times 

• Extinction Conditions 

• Acoustic Response Functions 

 

 

 

 

 

 

 

 

 



 

 

 

 
 

 

 

 

 

 



 

 

 

 
 

 

 

 

 

 

 



 

 
Comparisons of predictions of autoignition times for different chemical-kinetic 

mechanisms. 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 

 
The six-step mechanism for autoigntion. 

 



 
 
 
 
 
 

 
 
Range of validity of the six-step short mechanism for autoignition.  At crossover the rates 

of OOHOH +→+ 2  and MHOMOH +→++ 22  are equal. 



CONCLUSIONS 

• Good 22-step detailed mechanisms exist. 
• At high pressures (≥  50 bar) it becomes important 

to include falloff, especially for 
MOHMOH +→+

22
2 . 

• Chaperon efficiencies of water for 
MHOMOH +→++

22
 have been improved 

recently. 
• Most important uncertainties currently pertain to 

chaperon efficiencies. 
• Most mechanisms give good results over rather 

wide ranges of conditions. 
• Differences in predictions of different mechanisms 

are greatest for autoigntion near crossover. 
• Even some of the new mechanisms in the literature 

are poor for autoignition near crossover. 
• A simple irreversible six-step mechanism is good 

for predicting autoignition delays over a wide 
range of conditions. 




